
Chapter 8
An Introduction to Phylogenetic Path
Analysis

Alejandro Gonzalez-Voyer and Achaz von Hardenberg

The questions addressed by macroevolutionary biologists are often impervious to
experimental approaches, and alternative methods have to be adopted. The phy-
logenetic comparative approach is a very powerful one since it combines a large
number of species and thus spans long periods of evolutionary change. However,
there are limits to the inferences that can be drawn from the results, in part due to
the limitations of the most commonly employed analytical methods. In this
chapter, we show how confirmatory path analysis can be undertaken explicitly
controlling for non-independence due to shared ancestry. The phylogenetic path
analysis method we present allows researchers to move beyond the estimation of
direct effects and analyze the relative importance of alternative causal models
including direct and indirect paths of influence among variables. We begin the
chapter with a general introduction to path analysis and then present a step-by-step
guide to phylogenetic path analysis using the d-separation method. We also show
how the known statistical problems associated with non-independence of data
points due to shared ancestry become compounded in path analysis. We finish with
a discussion about the potential effects of collinearity and measurement error, and
a look toward possible future developments.
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8.1 Phylogenetic Linear Models: Drawbacks
and Limitations When Analyzing the Influence
of Multiple Variables

Because comparative biologists address questions related to long-term processes,
they are faced with an important practical obstacle: the time necessary to produce
evolutionary change. Hence, as with many problems in ecology, evolution, and
behavior, the questions addressed by comparative biologists are often impervious
to experimental approaches and alternative methods have to be adopted. Phylo-
genetic comparative methods employ the results from replicated ‘‘natural experi-
ments’’ across multiple extant taxa as the data with which to test evolutionary
hypotheses. Repeated associations between putative functional traits and envi-
ronmental variables (proxies for a selective regime) or among traits are taken as
supporting the evolutionary hypothesis. However, although the approach is
potentially a very powerful one, given that comparisons generally involve
numerous species and hence span long periods of evolutionary change (Freckleton
2009), comparative biologists are constrained in the inferences or conclusions they
can draw from their results. Correlations between traits or between traits and the
environment in extant taxa do not address the question of evolutionary origin
(Martins 2000). Indeed, an important limitation when dealing with processes
having occurred in the distant past is that there is no information about the con-
ditions during most of the evolutionary history of the process being analyzed.
Therefore, although there is a relationship between traits in extant taxa and current
environments, this does not necessarily mean that there was a relationship between
traits and the environmental conditions when the adaptation arose (Martins 2000).
Furthermore, correlations between traits and the environment or between traits do
not necessarily imply that the environment or trait is the driving force for the
observed phenotypic changes (Martins 2000). Indeed, all correlative data have the
inherent limitation that there is no way to determine causality. Nonetheless,
a comparative method does exist allowing researchers to determine the order of
evolutionary transitions (contingency) in correlated discrete traits (Pagel and
Meade 2006).

These caveats not withstanding, there are also limitations regarding inferences
researchers can make about their results due to limitations of the most commonly
employed statistical methods. Currently, when testing hypotheses about associa-
tions between traits or traits and the environment, the method most often employed
by comparative biologists is based on linear models. Phylogenetic independent
contrasts or phylogenetic generalized least squares (PGLS) methods allow to
analyze covariation between traits or traits and the environment, controlling for
non-independence of data points (correlated residuals) due to shared ancestry
(Felsenstein 1985; Grafen 1989; Martins and Hansen 1997). In addition, PGLS
allows to combine continuous and discrete traits in a single model without the need
to code dummy variables as well as allowing for different models of trait evolution
to be incorporated in the analyses (Martins and Hansen 1997; see Chaps. 5 and 6).
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However, both methods present similar limitations, which are the same as those of
traditional linear models. First, only a single-dependent variable can be analyzed at
a time, although a more realistic reflection of the complexity of the multivariate
relationships currently analyzed by comparative biologists would allow for
simultaneous exploration of the effects of a number of predictor variables on a
number of different outcomes. Second, in multivariate linear models, a particular
variable can either be a predictor or a response; however, a particular phenotypic
trait can be responding, for example, to the influence of the environment and in
turn be itself the cause of changes in a second phenotypic trait, hence a single trait
can be both a response and a predictor. In order to overcome these limitations of
traditional multivariate linear models, path analysis was developed. Confirmatory
path analysis (and structural equation modeling) is an extension of multiple
regression, but it is superior to ordinary regression analysis in that it allows
researchers to move beyond the estimation of direct effects and analyze the relative
importance of alternative causal models including direct and indirect paths of
influence among variables. In von Hardenberg and Gonzalez-Voyer (2013), we
introduced phylogenetic path analysis (PPA), integrating PGLS with the d-sepa-
ration method for path analysis developed by Shipley (2000a). The proposed
method allows researchers to harness the power of path analysis to disentangle
cause–effect relationships among variables with data leading to correlated resid-
uals due to shared ancestry. In this chapter and in the online practical material
(hereafter OPM) available at www.mpcm-evolution.org, we provide further
information and a detailed tutorial about how to perform PPA using the open
source statistical language R (R Development Core Team 2013).

8.2 The Philosophy of Path Analysis

Correlation does not imply causation. Back in our undergraduate statistics classes,
we were all taught this scientific mantra (Fig. 8.1). This statement is so deeply
embedded in our modern scientific culture that it even deserved its own Wikipedia
page.1 Indeed, it is undeniable that if A is related to B, this does not imply that B is
caused by A, or that A is caused by B. Both variables may, for example, be caused
by a third confounding variable C. Some simple examples will elucidate this point:
A highly significant correlation exists between the number of breeding pairs of
storks (Ciconia ciconia) and human birthrates in Europe (Matthews 2000). Does
this imply that storks deliver babies? Another study suggests that scientific pro-
ductivity (measured as the number of citations) of ecologists is inversely correlated
with per capita beer consumption (Grim 2008). Does this mean that beer drinking
is detrimental to your scientific career? If you are not willing to give up your
passion for beer, you may nonetheless be able to compensate eating lots of

1 http://en.wikipedia.org/wiki/Correlation_does_not_imply_causation Retrieved June 4, 2014
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chocolate. This at least is what a recent study in the New England Journal of
Medicine suggests (Messerli 2012). The study shows a significant correlation
between per capita chocolate consumption and the number of Nobel laureates per
10 million population in each country. All of these causal claims can easily be
dismissed, taking into account other possible common causal variables, if not
simply by logic. The main problem with the above-mentioned studies is that they
are based on observational data rather than on controlled or randomized experi-
ments (Fisher 1926), which are the commonly accepted scientific methods to infer
causality. It would be great to be always able to use proper randomized or con-
trolled experiments in all our studies, but this is obviously not possible, particu-
larly in the case of comparative studies, where the unit of analysis is estimates of
trait values for diverse species.

Correlation does not imply causation. This is what we have so dutifully learned.
But is this completely true? Actually no. Indeed, without being afraid of saying a
heresy, we can claim that correlation always implies an underlying, unresolved
causal structure (Shipley 2000b). If we can rule out that the correlation between
two variables is simply due to chance, there must be something that causes this
relationship directly or indirectly through some other variables, even if we cannot
necessarily identify the causes. The causal structure behind this correlation is
indeed said to be unresolved because we cannot know, from the single correlation
we can observe, how this correlation structure is built. Let us take a closer look at
the ‘‘baby-delivering storks’’ data of Matthews (2000). The original data are
available in the OPM available at http://www.mpcm-evolution.org as a
‘‘comma-separated values’’ (CSV) file. A tutorial showing how this data was
analyzed and plotted using the open source statistical language R (R Development
Core Team 2013), is also available in the aforementioned Web site. A quick glance
at Fig. 8.2 strongly suggests that there is a relationship between number of storks
and human births. Indeed, there is a significant relationship between the number of
stork pairs and human birthrate with a p value of 0.008.

Fig. 8.1 Courtesy of XKCD (Distributed under a creative commons attribution-noncommercial
2.5 license)
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Of course, none of us seriously believes that this means that storks really deliver
babies2! Everybody will most likely agree that there is some other confounding
variable which is the real, direct, or indirect cause of both the number of breeding
stork pairs and human birthrates. As we said: correlation always implies an
underlying, unresolved causal structure. Theoretically, we could test whether
storks actually deliver babies doing a randomized experiment, for example,
keeping constant the number of breeding stork pairs over a random selection of
countries3 in order to physically control for the variability in the number of stork
pairs and at the same time excluding the effect of other possible confounding
variables thanks to the randomization. However, this would undeniably be a very
large scale and impractical experiment, not considering the moral implications it
would have! What we can however do, if we have other factors which we suspect
to be the true cause behind both human birthrates and the number of stork pairs, is
to statistically control for the variability in these factors and thus see whether,
controlling for the supposed common cause (in statistical jargon we would say:
conditioning on it) the relationship between the number of storks and human
birthrates still holds. We can try this using one of the other variables available in
the dataset: area, which represents the surface size in squared kilometers of each
country. It is indeed reasonable to think that larger countries host a higher number
of stork pairs and at the same time have higher human birthrates, possibly indi-
rectly through some other unmeasured variable. Indeed, there appears to be a very

Fig. 8.2 Relationship
between the number of
breeding pairs of storks
(Ciconia ciconia) and human
birthrates in European
countries (data from
Matthews 2000)

2 If you do, you can stop reading here!
3 By hunting or, less drastically, translocating excess pairs from one country to an other.
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strong relationship between human birthrate and country area (Fig. 8.3a)! We can
do the same for the relationship between the number of stork pairs and area. In this
case also the relationship (Fig. 8.3b), even thought not as strong, is significant
(p = 0.0148). We can now go back to our first linear model of the relationship
between number of stork pairs and birthrates and statistically control for the effect
of the confounding variable area, simply including this variable in the model
transforming it into a multiple linear regression model of the kind4:
Birth * Area + Storks. Where Birth = birthrate, Area = country area, and
Storks = number of stork pairs. With this model, while the effect of area on
birthrate is highly significant (p = 6.62e-06), including this variable drastically
changed the significance of the effect of the number of stork pairs to an unim-
pressive p value of 0.307 compared to the p value of 0.008 we obtained previously
without conditioning on area! Technically, what we did is test the partial regres-
sion coefficient of the effect of the number of stork pairs on birthrate statistically
controlling for the confounding effect of area and thus testing the statistical
independence of the number of stork pairs from human birthrate. Is this enough to
be able to claim that area is thus the common cause of both the number of breeding
stork pairs and human birthrate? Sadly no. Indeed statistically, even if not logi-
cally, the result of this partial regression model may imply at least one alternative
causal structure besides the above-mentioned hypothesis: The number of stork

Fig. 8.3 a Relationship between human birthrate and country area; b relationship between the
number of breeding pairs of storks and country area (data from Matthews 2000)

4 Note that here and in the rest of this chapter, we use the modified Wilkinson-Rogers notation
for linear models (Wilkinson and Rogers 1973) widely used in statistical languages such as R. In
this notation, the intercept is implicit and the tilde (*) separates the left-hand side from the right-
hand side of the equation.
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pairs may indirectly influence human birthrate through the area of countries.5

While this alternative hypothesis does not necessarily make any logical sense in
this case,6 statistically, in the absence of further information, we cannot distinguish
it from the hypothesis that area influences both the number of storks and birthrate,
as the correlation pattern we observe among the variables (i.e., the partial
regression model described above), can imply more than one underlying causal
structure (as already mentioned that is why it is unresolved). However, while
correlation implies an underlying, unresolved causal structure, causation always
implies a completely resolved correlational structure (Shipley 2000a). This means
that the hypothesized causal relationships among variables imply one, and only
one, specific pattern of correlations and partial correlations (which in turn, how-
ever, can be cast by more than one causal model). Bill Shipley in his excellent
book on cause and correlation in biology compares the pattern of correlations we
can observe in nature to the shadows cast on a screen by a three-dimensional
object, which in turn represents the causal structure behind the observable corre-
lations (Shipley 2000b). A round shadow can be cast both by a ball as well as by a
frisbee (i.e., the implied causal structure is unresolved), but the ball can cast only a
round shadow (the implied correlational structure is completely resolved). This
means that, at least in principle, we could test the ‘‘goodness of fit’’ of the cor-
relational pattern we would expect to be cast by our hypothesized causal model,
with the correlational structure we observe in the data. To be able to do this, we
need a formal method to translate between the language of causality and the
language of statistical probability. We also need an appropriate measure of the fit
between the correlational pattern we observe in the data and the one that must exist
given a specific causal structure. We will take a closer look at the recently
developed methods permitting us to do exactly this, but first we need to define
better the language of causality. To this end, let us complicate a bit our model of
the causal relationships linking the various variables present in the Matthews
(2000) dataset. For example, we can plausibly hypothesize that while area is the
common cause of the number of stork pairs and human birthrate, this latter vari-
able in turn is the causal parent of the number of inhabitants in each country7

(Fig. 8.4). The causal model depicted in Fig. 8.4 is what in graph theory is called a
directed acyclic graph (DAG). Squares represent variables, which in the language
of graph theory are called ‘‘vertices.’’ The directed arrows, called ‘‘edges,’’ rep-
resent the hypothesized causal links. The graph is called ‘‘Acyclic’’ because in this
kind of graph, a causal path (i.e., the path you can do following the edges passing
from one vertex to the next along the causal model) never returns to the same
starting vertex. A vertex in a DAG such as birthrate in Fig. 8.4 can be both a

5 Implying that country size is somehow determined by the number of stork pairs inhabiting that
country!
6 Even though it is not necessarily more implausible than the hypothesis that storks deliver
babies!
7 In the data frame storks.dat this variable is called ‘‘Humans’’ and it is expressed as millions of
inhabitants.
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dependent and an independent variable at the same time (in the language of graph
theory you would say that it is both a causal parent and a causal child). We refer to
Shipley (2000b) and Pearl (2009) for more details about the language of graph
models. DAGs are the mathematical tool we use to formulate hypothesized models
of causal relationships among variables. What we now need are formal methods to
translate between the language of causality (which we represent with DAGs) and
the language of statistical probability. These tools have been introduced to biol-
ogists only relatively recently and they go under the name of path analysis and
structural equation models (of which classical path analysis is a special case). In
the next sections, we will describe them in more detail, with a specific reference to
past attempts in the literature to use these methods with data in which data points
are represented by species with non-independent errors due to the underlying
phylogeny. We will also introduce the d-separation-based technique for path
analysis (Pearl 1988, 2009) and the d-sep test developed by Shipley (2000a),
which are at the core of the method we recommend to use for phylogenetic path
analysis (von Hardenberg and Gonzalez-Voyer 2013).

8.3 Structural Equations and d-Separation-Based
Techniques

In structural equation models (SEM), the causal models are translated into a set of
linear equations following the causal structure, and the parameters to be estimated
from the data are specified. The expected pattern of covariance among the vari-
ables can thus be derived simply using the rules of covariance algebra. The free
parameters are estimated by maximum likelihood minimizing the difference
between the expected covariance matrix of the assumed model and the observed
covariance in the data. Finally, we can calculate the probability that the minimum
difference between the expected and observed covariance is different from zero
(i.e., the observed covariance pattern deviates significantly from the covariance
expected by the causal model). This method is appealing because it is based on
maximum likelihood and it permits the inclusion of unmeasured latent variables.
The latter is an important difference between SEM and path analysis based on
d-separation, which cannot include latent variables. For a thorough review of SEM

Area

HumansStork pairs Birth rate

Fig. 8.4 Causal model of the relationship between the number of breeding pairs of storks, human
birthrates in European countries, country area and population size depicted as a directed acyclic
graph
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methods, we point readers to Shipley (2000b) and Kline (2010). However, to make
SEM methods amenable to work with an underlying phylogenetic signal not only
must we compare the covariance matrix expected by the causal model with the
covariance observed in the data, but also somehow include the expected covari-
ance due to common ancestry. In Sect. 5, we review past attempts to develop
phylogenetic SEMs (for examples, see Lesku et al. 2006; Santos 2009, 2012;
Santos and Cannatella 2011). The method that we propose to use for phylogenetic
path analysis (von Hardenberg and Gonzalez-Voyer 2013) follows a different
approach and is based on the concept of d-separation developed by Judea Pearl and
his collaborators (Geiger et al. 1990; Pearl 1988; Verma and Pearl 1988).

D-separation8 is the ‘missing link’ between the language of causality, repre-
sented as directed acyclic graphs, and the language of statistical linear models.
D-separation specifies the minimum set (called the basis set) of independence and
conditional independence relationships (called d-separation statements) that hold
true among all variables (the vertices) of the hypothesized causal model. In other
words, it specifies the list of all, and only those, pairs of variables that are sta-
tistically independent conditioning on a set of other variables in the causal model.
The minimum set of conditional independencies is determined in the following
manner. First, list all pairs of non-adjacent vertices, i.e., the pairs of vertices that
are not directly connected by an arrow (edge) in the directed acyclic graph. This
gives a list of conditionally independent pairs of variables (these vertices are said
to be d-separated). Second, list all the vertices with an arrow pointing directly to
any of the conditionally independent variables in each pair, i.e., the causal parents
of any of the two d-separated vertices. This gives the list of variables upon which
the independent pairs of variables are conditioned, i.e., the variables that are
statistically controlled to test the independence between the d-separated variables.
Simply combining the two lists, we obtain the minimum set of conditional inde-
pendence statements, which have to be true not to reject the hypothesized causal
model. The conditional independence statements can be directly translated into
statistical models using correlation, linear models, or other statistical tests that
adequately fit the error structure of the data including nonparametric tests and
permutation methods. The flexibility in the statistical methods that can be
employed to test the conditional independencies is one of the important advantages
of d-separation compared to SEM methods. To make the above clearer, we will go
back to our ‘‘baby-delivering storks’’ example and the hypothesized causal model
depicted in Fig. 8.4. In this simple example, the number of stork pairs is
d-separated from birthrate (storks, birth), and from human population size (storks,
humans). Furthermore, area is d-separated from human population size (area,
humans). This gives us the following list: [(storks, birth), (storks, humans), and
(area, humans)]. Let us now list the causal parents. For the first statement (storks,
birth) we have only area, which is directly linked with both vertices. Following the
notation proposed by Shipley (2004), we put the parent variables between curled

8 D-separation is an acronym for ‘‘Directed’’ separation.
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brackets, in this case: {Area}. For the second statement (storks, humans), we have
two parent variables: area, directly causing storks, and birth, which is the causal
parent of humans {Area, Birth}. For the last statement in this example (area,
humans), we have only one causal parent which is birth directly causing humans
{Birth}. The resulting list is [{Area}, {Area, Birth}, {Birth}]. As we mentioned
above, combining these two lists we obtain the basis set of conditional indepen-
dencies which must be true for the data to fit this model: [(Storks, Birth){Area},
(Storks, Humans){Area, Birth}, (Area, Humans){Birth}]. We can now translate
these d-separation statements to statistical linear models in which we test the
independence of the pairs of variables in round brackets conditioning on their
parent vertices enclosed in curled brackets. The linear models we get are the
following:

Birth * Area + Storks
Humans * Area + Birth + Storks
Humans * Birth + Area
In the OPM (available at: http://www.mpcm-evolution.org), we show how you

can test these models using R. You may have noticed that actually, we already
tested the first of these linear models in Sect. 2 and found that, indeed, human
birthrate is statistically independent from the number of stork pairs when condi-
tioning on area with a p value of 0.307. The effect of storks on human population
size is not significant when conditioning on area and birthrate (p = 0.110) as well
as the effect of area on humans when conditioning on birthrate (p = 0.6232). The
fact that none of the three hypotheses implied in the above independence state-
ments is rejected, permits us to say that the hypothesized causal model depicted in
Fig. 8.4 is a plausible explanation of the correlation patterns we observe among the
variables.

Shipley (2000b) proposed to combine the p values using Fisher’s C statistic
which is calculated with the following formula:

C ¼ "2
Xk

i¼1

ln pið Þð Þ ð8:1Þ

where k is the number of conditional independencies in the minimum set and
p their p value. The C statistic follows a v2 distribution with degrees of free-
dom (df)= 2 k. The C statistic therefore provides a convenient statistic for testing
the goodness of fit of the whole path model. With this test (called the d-sep test),
the path model is rejected, i.e., it does not provide a good fit to the data, if the p
value of the C statistic is below the pre-specified alpha value (e.g., 0.05). We can
now test the fit of our hypothesized causal model of the relationships among
number of stork pairs, human birthrate and population size and country surface
area. The C statistic has a value of 7.713, which, knowing that the number of
conditional independencies k is 3, leads to a p value of the d-separation test of
0.26. This p value is larger than an alpha value of 0.05, and therefore, we can
accept the model depicted in Fig. 8.4 as a plausible causal explanation of the
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relationships found among the variables in our dataset. If you are not convinced,
and still believe that storks deliver babies, you can try an alternative model in
which instead of having a direct causal link from area to birthrate, you have a
direct causal link from the number of stork pairs to birthrate, while the other
relationships stay the same as in the previous model. This alternative causal model
is depicted as a DAG in Fig. 8.5. We leave it as a little exercise for the readers to
obtain the minimum set and thus apply the d-sep test to the derived conditional
independencies.9 If you carefully followed all the steps, you should get a C value
of 29.2 and a corresponding p value of 5.570647910-5, which is way below the
alpha value of 0.05. This model is therefore rejected, and this should, we think, put
the final word on the dispute of whether storks actually deliver babies! In the next
section, we show how to apply this elegant and powerful method to data with an
underlying phylogenetic signal, introducing in this way our proposed method for
phylogenetic path analysis (von Hardenberg and Gonzalez-Voyer 2013).

8.4 A Step-by-Step Guide to Phylogenetic Path Analysis
Using the d-Separation Method

The first step for any phylogenetic path analysis, as for any study in evolutionary
biology, is to clearly define the hypothesis (or hypotheses) being tested. Although
this may seem rather trivial to most readers, if not enough time is dedicated to
clearly define the hypotheses to be tested, their predictions and underlying
assumptions, the study can rapidly go astray and valuable time go to waste. A clear
description of the hypotheses to be tested will be crucial for the next step: data
collection. Although in the past, the limiting factor for comparative analyses was
the lack of well-defined and robust phylogenies, at present the limitations are
generally due to insufficient data. A well-defined hypothesis is important to guide
researchers as to the data required to test it. We should stress the importance of
careful data collection with particular attention to the importance of repeatability,

Area

HumansStork pairs Birth rate

Fig. 8.5 Alternative causal model of the relationship between the number of breeding pairs of
storks, human birthrates in European countries, country area, and population size depicted as a
directed acyclic graph

9 All conditional independencies and full results for this model are provided in the online
practical material (http://www.mpcm-evolution.org).
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data that are representative of the species, and at the same time are also compa-
rable across species (see Chap. 7).

The second step is to use graph theory to depict the hypotheses being tested as
directed acyclic graphs. As mentioned previously, although path analysis is an
extension of linear regression, it relies on path diagrams to depict the causal
relationships between the variables. Because path analysis is a model-testing
procedure, and not a model-developing one, all models to be tested should be
based on theory and previous evidence. Once the hypotheses to be compared have
been properly depicted by the directed acyclic graphs, the third step is to test the fit
of each path model to the data.

As seen above, to test the fit of a path model to the data, we must first enu-
merate the minimum set of conditional independencies that must be true for the
model to adequately fit the data. These conditional independencies can then be
translated into linear models and tested with conventional statistical tests. Shipley
(2009) showed that the d-separation method for path analysis can be extended to
data with a hierarchical structure using generalized mixed models to test the
conditional independencies in the minimum set. In von Hardenberg and Gonzalez-
Voyer (2013), we extended the method further to include the particular case of
interspecific comparisons, in which the lack of independence of data points and
resulting correlation structure in the residuals violates assumptions of traditional
statistical methods. We showed how the conditional independencies can be simply
translated into phylogenetic generalized least squares models. Because the con-
ditional independencies are being tested using linear regression models (PGLS)
rather than correlations, the order in which we put the variables in the model is
important and thus care must be taken when determining which vertex is the
‘‘dependent variable’’ and which vertex is the ‘‘independent variable.’’ Vertices
that are causal children (at the end of the causal path separating the two vertices of
interest) are dependent variables, while causal parents (at the beginning of the
causal path) are the independent variables. To calculate the number of conditional
independencies in the minimum set, the following handy formula can be employed
(Shipley 2000b):

V!

2% V " 2ð Þ!" A ð8:2Þ

where V is the number of vertices in the directed acyclic graph and A is the number
of edges (the arrows in our DAG). The test, for each conditional independency,
involves determining whether indeed, vertices are uncorrelated when conditioning
on the parents of each of them. A slightly special case, for defining conditional
independencies, is when two vertices are separated by a collider vertex. A vertex is
called a collider vertex when two edges from opposite directions in the causal path
point toward it (e.g., A ? B / C). A collider vertex is said to switch the causal
path from active to inactive, that is, vertices in one side of it are unaffected by
changes in vertices in the other side. Hence, when testing the conditional inde-
pendency of vertices on either side of a collider, the collider is not included in the
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conditioning set. For example, to test the conditional independency of (A, C) the
conditioning set is {/}. The symbol / is used to indicate that A, C are conditioned
on no other variable. The last step is to combine the p values of the conditional
independence tests using Fisher’s C statistic and thus test the fit of the hypothe-
sized causal model as shown in the previous section (Sect. 8.3).

To illustrate more clearly and in a greater extent the process of phylogenetic
path analysis, we now present an empirical example, which we invite the readers
to follow replicating it on their own computers using the R language. To make the
example biologically meaningful and more intuitive, we propose the following
evolutionary puzzle. The aim of the study is to identify the factors that determine
geographical range size in the Rhinogrades. If you are unaware of this particular
mammal order (Rhinogradentia, DE BURLAS Y TONTERIAS 1948), this comes
as no surprise. The Rhinogrades (also called snouters) were endemic to the islands
of the Hi-yi-yi Archipelago in the Pacific Ocean only discovered in 1941 but
erroneously completely destroyed by secret nuclear experiments in the 1950s,
causing the complete extinction of this highly diversified taxonomic group. The
main characteristic of the Rhinogrades is that their noses evolved and diverged (in
an analogous way to the beak in Darwin finches) into variegated forms with the
most diverse functions. In particular, in most genera of the Rhinogradentia,
the nose evolved into a complex locomotion organ (Fig. 8.6). For a full account of
the natural history of the Rhinogrades, we refer the readers to Stümpke (1967).
Previous studies suggest that, as in other mammalian species, there is an allometric
relationship between range size and body mass. Some Rhinogradentia specialists
suggest that species with larger range sizes also have larger litter sizes, because of
higher resource availability. Nonetheless, given the allometric relationship
between body size and litter size, it is still unclear whether the association between
litter size and range size is causal or merely correlational. There is much dis-
cussion regarding the relationship between range size and nose length. On the one
hand, range size has been proposed to directly affect nose length, given that
Rhinogradentia use their nasal appendage for locomotion and hence larger range
sizes select for longer-distance displacements. Alternatively, some experts suggest
that the direction of causality should be turned upside down and that it is nose
length that determines displacement distances, and therefore, species with longer
noses are able to expand their range size. Finally, there is some consensus among
Rhinograd experts that dispersal distance is determined by nose length. Based on
this knowledge, we can construct a set of hypotheses of causal relationships among
variables which we can depict using directed acyclic graphs with the five traits of
interest. We will refer to the five traits of this example with acronyms for brevity:
body mass = BM, litter size = LS, nose length = NL, dispersal distance = DD,
and range size = RS. Figure 8.7 presents the models we proposed for the present
example.

The nuclear disaster which destroyed the Hi-yi-yi islands, together with the
Rhinogrades also brought down the Darwin Institute of Hi-yi-yi, where all the
specimens and life history data of this group were conserved (Stümpke 1967).
We therefore had no other choice but to resort to simulated data for our example.
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We simulated a phylogenetic tree of 100 species under a pure-birth model. Data
for the five variables were simulated to evolve on the tree following a Brownian
model with a lambda-transformed tree (k = 0.8). The data were simulated to
evolve with varying degrees of inter-correlation among the variables based on a
pre-specified causal model. Variables directly linked in the path model presented
correlations of 0.5, while variables with indirect links presented correlations that
decreased proportionally with the number of variables separating them, with
correlation decreasing by half for each variable in the indirect link (see OPM).

Fig. 8.6 A representative of the Rhinogradentia order: the Hopsorrinhus aureus belonging to the
Hopsorrhinidae family (Snout Leapers sens. strict.), characterized by the peculiar nasal structure
which permits them to move thanks to long backward leaps (Taken from Plate VI, in Stümpke 1967)
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Use of simulated data following a pre-specified path model is an excellent means
to practice a novel approach. In the OPM (http://www.mpcm-evolution.org), we
provide both the simulated data (in a file called rhino.csv) and phylogeny (in a file
called rhino.tree) used in the Rhinogradentia example, as well as the R code used to
simulate the phylogenetic tree and data to enable readers to simulate their own data
under a different path model if they wish to do so. We also provide an online tutorial,

Fig. 8.7 Alternative path models depicting the relationship between body mass, litter size, nose
length, dispersal distance, and range size in Rhinogradentia
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replicating all steps described in this section using R. In the first model in Fig. 8.7,
there are 5 vertices and 4 edges, hence the minimum set contains 6 conditional
independencies to be tested (as follows using the above-mentioned formula).

These are the conditional independencies in the basis set and their translation
into linear models:

Conditional independencies Linear models

(BM, DD) {NL} DD * NL + BM
(BM, RS) {DD} RS * DD + BM
(NL, LS) {BM} LS * BM + NL
(DD, LS) {BM, NL} LS * BM + NL + DD
(LS, RS) {BM, DD} RS * BM + DD + LS
(NL, RS) {BM, DD} RS * BM + DD + NL

It is important to note that since we are using linear models to test the condi-
tional independencies (as opposed to correlations), care must be taken when
determining which variable is the response and which the predictor. In such cases,
to determine the order of variables in the conditional independency, always follow
the direction of causality in the directed acyclic graph (as noted above). Note that
in particular cases there is no a priori reason to define one variable as the
‘‘response’’ and the other as the ‘‘predictor’’ as each variable is at the end of a
causal path. In such circumstances, the researcher must decide how to define the
model to test the conditional independency and keep it constant in other models
being compared. We can test the conditional independencies using one of the
available statistical packages to perform PGLS and thus obtain the value of the C
statistic as described above. Note that an important advantage of the approach we
propose is that it allows for analyses to be done using the evolutionary model
which best fits the data (Freckleton 2009; Freckleton et al. 2002; Grafen 1989;
Hansen 1997; Pagel 1999). In the case of this particular example, given we sim-
ulated the data under a Brownian model we will use PGLS analyses with a
maximum-likelihood estimate of the lambda parameter (Freckleton et al. 2002;
Revell 2010). Following the same steps as for the first path model, we can also test
the minimum set of conditional independencies for model 2. These are presented
below with their translation into linear models:

Conditional independencies Linear models

(BM, DD) {NL} DD * NL + BM
(BM, RS) {DD, LS} RS * DD + LS + BM
(NL, RS) {DD, LS, BM} RS * DD + LS + BM + NL
(NL, LS) {BM} LS * BM + NL
(DD, LS) {BM, NL} LS * BM + NL + DD
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The reader can now test the conditional independencies of the remaining
models depicted as DAGs in Fig. 8.7.10 Table 8.1 presents the values of the C
statistic for each model as well as the p value.

Based on the results in Table 8.1, we can already conclude that the first three
models provide very poor fit to the data, because the p value of the C statistic is
significant. Hence, we can reject the hypothesis that the correlation structure
observed in the data is the result of these three proposed causal models. On the
contrary, models 4–9 cannot be rejected, or in other words the correlation structure
observed in the data could potentially result from any of these 6 models. As stated
above, there is inevitably some uncertainty regarding the causal model that gives
rise to the observed correlation structure in the data, and in this case we have
identified 6 candidate causal models. This not very satisfactory! Shipley (2000b)
proposed two competing models that can be compared based on the difference in
the C statistics, which follows a v2 distribution with D df = dfmodel1 - df model2.
However, only nested models can be compared in this manner. Ideally, we would
like to be able to compare among all models (including non-nested ones) and rank
them based on some estimate of their goodness of fit (Burnham and Anderson
2002). In von Hardenberg and Gonzalez-Voyer (2013), we proposed to use an
information theoretic approach alike to the classical Akaike Information Criterion
(Akaike 1974) using a modified version of AIC, which we called the C statistic
Information Criterion (CIC). This approach was first proposed, in the framework
of non-phylogenetic path analysis, by Cardon et al. (2011). Use of an information
theoretic approach requires that the measure of ‘‘goodness of fit’’ be based on
maximum-likelihood estimates; hence to be able to apply such an approach to path
analysis using d-separation, it is necessary to show that the C statistic, used to
calculate this criterion, is equivalent to a maximum-likelihood estimate. Shipley
(2013) recently provided such mathematical proof, validating the use of AIC (i.e.,

Table 8.1 C statistic, number of conditional independencies tested (k), and p values of the C
statistic for the 9 path models depicted in Fig. 8.7

Model C statistic k p value

1 63.809 6 4.52 9 10-9

2 62.769 5 1.08 9 10-9

3 28.973 6 0.004
4 6.582 5 0.764
5 5.258 4 0.730
6 6.439 5 0.777
7 6.018 4 0.645
8 7.699 6 0.808
9 7.362 5 0.691

10 All conditional independencies and full results for these models are provided in the online
practical material.
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CIC) to compare between non-nested models in the framework of d-separation
path analysis. This should allay concerns of readers worried by the fact that the
C statistic is calculated based on the p values of the conditional independency tests
and we are now using it to estimate CICc, apparently combining frequentist and
information theoretic approaches. To calculate CIC, we simply need to know the
number of parameters estimated in the path model using the empirical data. In
phylogenetic path analysis, we assume a multivariate normal distribution of errors
and linear relationships between variables, because these are assumptions of the
phylogenetic generalized least squares models used to test the conditional inde-
pendencies (for use of CIC with models with different error distributions, see
Shipley 2013). We employ here the formula to calculate CICc, the equivalent of
CIC with a correction for small sample sizes. In any case, when the sample size is
large relative to the number of parameters, CICc will converge on CIC. To cal-
culate CICc:

CICc ¼ C þ 2q% n
n" 1" qð Þ

ð8:3Þ

where C is the C statistic for the particular model, q is the number of parameters
estimated in the path model, and n is the sample size, in the case of phylogenetic
path analysis the number of species. For a given path model, we are interested in
the slopes of each of the causal links between the variables and the variances. For
example, for model 1 in the Rhinogrades exercise, 9 parameters are estimated: the
variance for body mass (BM), which is the only variable without any causal parent
in the model, and the 4 slopes and the variances for the causal links. While in
model 2, 10 parameters are estimated: the variance for body mass, 5 slopes for the
causal links and 4 variances, because in this case range size is causally determined
by both litter size and dispersal distance, and therefore, two slopes and one var-
iance are estimated for these causal links (see Shipley 2013 for details). In cases in
which the interest lies only in the slopes of the causal links between the variables,
a quick way to obtain the number of parameters estimated in the model is simply to
add the number of vertices and number of edges in the path model. Note that for
models to be comparable using CICc, all models must have the same sample size
(number of species), and therefore, the data set is reduced to the maximum number
of species for which data for all variables is available. Furthermore, all compared
models must also have the same number of vertices, although they can have
different numbers of edges. Hence, to compare two models in which one variable
has no causal link to any other (i.e., there is no edge between it and any other
vertex in the model), the complete set of conditional independencies between this
variable and all others in the model must be tested to calculate the C statistic.
Indeed, such a model assumes that the ‘‘isolated’’ variable (unconnected to any
other variable in the model) is conditionally independent from all the variables in
the model, and this assumption must be tested (Cardon et al. 2011).

Now we can calculate CICc values for all the models, we are comparing in the
Rhinogrades example. With the CICc values in hand, we can also rank the models
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based on the difference in CICc (DCICc). DCICc is simply the CICc value of
model i minus the value of the model with the lowest CICc (CICcMIN). DCICc can
be used in the very same way as it is normally done in standard model selection
procedures using AIC (Cardon et al. 2011). Given that DCICc is measured in a
continuous scale of information, the values are comparable among models. As a
general rule of thumb, models with DCICc values \ 2 are all considered to have
substantial support (Burnham and Anderson 2002). The relative likelihood of a
model i given the data L (gi|data), provides information regarding the relative
strength of evidence for a model compared to the others and can be computed,
following Burnham et al. (2011):

‘ ¼ L gijdatað Þ ¼ exp"ð1=2ÞDCICcið Þ ð8:4Þ

Finally, CICc weights, the probability of each path model gi, given the data and
the set of models being compared, are also simple to compute as a measure of
strength of evidence (Burnham et al. 2011):

wi ¼ Pr mod gið Þ dataj gf ¼ liPR
j¼1 l

ð8:5Þ

Use of CICc allows us to move from a hypothesis testing to a hypothesis
comparison framework. Below we present the CICc values for all the tested
models in the Rhinogrades example, including the number of estimated parameters
in each model (q), DCICc, likelihoods and weights (Table 8.2).

Use of CICc allows for finer comparisons among models compared with what can
be gained by simply looking at the C statistic and its associated p value. Table 8.2
presents a clear ranking of all models from the Rhinogrades example. Those with
significant C statistics (models 1, 2, and 3) also show elevated CICc and DCICc
values, indicating that they provide a very poor fit to the data. We can also however
gain some insight about the six models with nonsignificant C statistics. Models 5, 7,
and 9 provide a relatively poorer fit to the data than the other three models (4, 6, and 8)
as the DCICc values are[2. We cannot distinguish between models 4, 6, and 8, since
they present very small differences in CICc, with all models showing DCICc values
\2. Note that care must be taken when comparing models with DCICc values\2.
As pointed out by Arnold (2010), also highlighted by Burnham and Anderson
(2002: p. 131), for equivalent AIC11 values, care must be taken when interpreting
models based solely on DAIC (or DCICc) values. In some cases, models might not
be truly ‘‘competitive’’ with top-ranking models, but appear to be based solely on
low CICc values, because addition of an uninformative variable, or in the par-
ticular case of path analysis an uninformative causal link between variables, can

11 CICc in the case of phylogenetic path analysis.
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lead to marginal changes in CICc values even though there is very little difference
in the goodness of fit. Therefore, models with such uninformative causal links
might present DCICc B 2, generally interpreted as indicating ‘‘substantial level of
empirical support’’ (Burnham and Anderson 2002: 170), although such an inter-
pretation would be erroneous. Burnham and Anderson (2002) suggest that models
having Di [DCICc] within 0–2 values of the best model should be examined to
check whether they differ from the best model by having 1 more parameter and
also present essentially the same maximized log-likelihood value (in this particular
case, similar C statistic). In such cases, the model with more parameters is not
really supported, but presents marginal difference with the ‘‘best model’’ simply
because one parameter is added to the model, although the fit of the model is not
truly improved as measured by the log-likelihood value (C statistic). Returning to
our example, we can see that models 4 and 6 differ by a single parameter from
model 8, the best-fitting model. Model 4 also differs from model 8 in the direction
of the causal link between range size and nose length, which as the reader might
remember was the cause of much discussion among Rhinograd experts. These
models also present small differences in C statistic with model 8 (model 4: dif-
ference = 1.35, model 6: difference = 1.21). Hence, following Burnham and
Anderson (2002) models 4 and 6 might not be considered as supported and
competitive to the same degree as the best-fitting model 8, even though they are
within DCICc \ 2. Note that we are by no means advocating selection of a single
model over all others. Rather, following Burnham and Anderson (2002) and
Arnold (2010), we highlight the need for caution when comparing models, above
all that it should not be done mechanistically simply based on DAIC (DCICc)
values. In applications of phylogenetic path analysis with empirical data, it is
highly likely that more than one model will present small (\ 2) DCICc values.
Under such circumstances, conclusions should be drawn based on the set of most
likely models.

In our example, Model 8 appears to be the best-fitting model. We can now
calculate standardized path coefficients of the causal edges linking the variables

Table 8.2 Number of parameters estimated in each model (q) C statistic information criterion
with correction for small sample sizes (CICc), DCICc, likelihoods (li), and CICc weights (xi) are
shown for each model of the Rhinogradentia example

Model q CICc DCICc li xi

8 9 27.700 0.000 1.000 0.349
6 10 28.911 1.211 0.546 0.190
4 10 29.054 1.354 0.508 0.177
9 10 29.834 2.134 0.344 0.120
5 11 30.258 2.558 0.278 0.097
7 11 31.018 3.318 0.190 0.066
3 9 48.973 21.273 2.402 9 10-05 8.380 9 10-06

1 9 83.809 56.109 6.548 9 10-13 2.284 9 10-13

2 10 85.240 57.540 3.201 9 10-13 1.117 9 10-13
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according to this model. Standardized path coefficients are particularly useful
because, being standardized, they are comparable with each other, and therefore,
we can compare the relative strength of each causal relationship in the model. To
calculate them, we must first standardize the original data. To do this, we subtract
the trait specific population mean from each value and divide by the standard
deviation. In the specific case of the simulated data used in this example (given it
is randomly drawn from a multivariate normal distribution with mean 0 and
standard deviation of 1), the data are already standardized, therefore this step is not
necessary.

We then use the standardized data to calculate the standardized path coefficients
using PGLS analyses, following the causal paths in the directed acyclic graph. In
the case of model 8, the path coefficients are as follows:

BM? LS 0.4973 (±0.0893 s.e.)
BM? NL 0.4614 (±0.0650 s.e.)
RS? NL 0.5281 (±0.0572 s.e.)
NL? DD 0.6285 (±0.0800 s.e.)

Had we truly competitive models, one way to account for this ‘‘model uncer-
tainty’’ is model averaging (Burnham and Anderson 2002). In von Hardenberg and
Gonzalez-Voyer (2013), we showed how standard model averaging procedures
can be applied also in the context of phylogenetic path analysis, averaging the path
coefficients of all models with CICc \ 2 according to the CICc weights of each
model, thus on the relative strength of the models in the averaged set of models.

What have we learned regarding the relationship between range size, nose
length, and other traits in Rhinogradentia after employing phylogenetic path
analysis to tackle the question? First, based on the best-supported model
(DCICc B 2), range size appears to be the causal parent of nose length, while litter
size does not appear to be causally linked to range size. Moreover, the effect of
range size on dispersal distance appears to be indirectly mediated through nose
length. In other words, in Rhinograds, dispersal distance appears to be directly
determined by nose length. Finally, given this entire example was based on data
simulated following a pre-specified path model we can now ask how precise is
phylogenetic path analysis in identifying the path model giving rise to the data?
Well, quite accurate in fact! The model we used to simulate the data is actually
model 8, which is the best-supported model based on CICc. Furthermore, model 9
is identical to model 8 except for the additional causal link between litter size and
range size. Despite virtually identical C statistics, there is a difference in CICc of
2.13, which suggests CICc is adequately penalizing this model for the additional
parameter. Finally, looking at the standardized path coefficients calculated above,
we see that they are all roughly around 0.5, which is not surprising, but reassuring,
as the data have been simulated with correlation coefficients of 0.5 for all the pre-
specified direct links.
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8.5 Phylogenetic Non-Independence of Data Points,
Correlated Residuals, and the Problems with Inflated
Type I Error

The interest in the present chapter is to apply path analysis to macroevolutionary
questions, involving comparisons among numerous species. Attempting to con-
vince readers of this book of the importance of accounting for non-independence
of data points due to phylogenetic relatedness of species is like preaching to the
choir.12 Nonetheless, we present first the challenges associated with accounting for
phylogenetic relatedness in path analysis and second demonstrate the extent of the
problem if non-independence of data points is ignored when undertaking confir-
matory path analysis using the d-separation method (von Hardenberg and Gonz-
alez-Voyer 2013). It is well known that interspecific comparative analyses violate
the assumption of traditional statistical methods that data points are independent,
indeed the varying degrees of shared ancestry of the species included in the
analysis influences the expected similarity of trait values (Felsenstein 1985;
Freckleton et al. 2002; Garland et al. 1992; Harvey and Pagel 1991). For linear
models, the main problem is the correlation structure of the residuals that is
determined by the degree of phylogenetic relatedness among species (Felsenstein
1985; Grafen 1989; Martins and Hansen 1997; Revell 2010; see Chap. 5). The
consequences of not accounting for phylogenetic effects in statistical analyses of
multispecies data are, among others, artificially inflated number of degrees of
freedom, incorrectly estimated variances, and increased type I error rates of sig-
nificance tests (Felsenstein 1985; Harvey and Pagel 1991; Martins et al. 2002;
Martins and Garland 1991; Rohlf 2006). These problems, however, become
compounded in path analysis because of the requirement of testing multiple
structural equations (in the case of SEM) or all the conditional probabilistic in-
dependencies that must be true for the causal model to be correct (in the case of the
d-sep test). Previous attempts at controlling for phylogenetic relatedness in path
analysis exist. Among those having included an explicit description of how phy-
logenetic non-independence was controlled are Lesku et al. (2006) and Santos and
Cannatella (2011) who used phylogenetic independent contrasts (PIC; Felsenstein
1985) as the data entered in a SEM. Use of independent contrasts allowed the
authors to account for phylogenetic non-independence explicitly in their SEM.
However, there are limitations associated with the use PIC. First, the method
assumes the traits, and covariances between traits evolve following a strict
Brownian motion model and performance can be compromised if the assumption
is not met (Revell 2010), second, PIC assumes strictly linear relationships between
traits (Quader et al. 2004). More recently, Santos (2012) combined two approaches
to control for phylogenetic non-independence in SEM in a study aimed at ana-
lyzing the factors associated to rate of molecular evolution in poison frogs. First,

12 All pun intended!
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for a set of species trait values, he estimated the phylogenetic signal of each trat by
estimating the maximum-likelihood value of k, he then calculated PIC from a
k-transformed phylogeny using the ML estimate for each particular trait. For data
on rate of molecular evolution he used an estimate of the variance-covariance
matrix derived from a molecular phylogeny.

We proposed an alternative approach (von Hardenberg and Gonzalez-Voyer
2013) combining confirmatory path analysis using the d-separation method (Pearl
1988; Shipley 2000b) and phylogenetic generalized least squares (PGLS; Martins
and Hansen 1997). The advantage of PGLS is that it can incorporate distinct
models of trait evolution, can combine continuous and categorical variables in a
single model without the need to code dummy variables, and provides the value of
the y-intercept (Martins and Hansen 1997; see Chap. 5). Further, a key advantage
of using PGLS is that it allows for path analyses to be undertaken using
taxon-specific trait values rather than contrasts, facilitating interpretation of the
results. Finally, in PGLS an evolutionary parameter is estimated simultaneously
with model fit, which determines the amount of phylogenetic signal in the data (in
the residuals of the model to be precise) and hence the necessary correction for the
expected covariance in trait values resulting from phylogenetic relatedness, given
the evolutionary model (Freckleton et al. 2002; Martins and Hansen 1997; Revell
2010). This is an important advantage because in some instances data may present
a phylogenetic structure that is intermediate between that predicted by the evo-
lutionary model and absence of phylogenetic correlation in the data (Freckleton
et al. 2002; Revell 2010). Under such circumstances, PGLS models have been
shown to outperform independent contrasts (Martins and Hansen 1997). These
advantages of PGLS allow us to ensure that tests of conditional independencies are
done with the adequate correction for phylogenetic signal in the residuals of each
particular model. Note that the flexibility of the d-separation method also allows
researchers to combine continuous, categorical, and discrete variables in their path
models, because tests of conditional independencies can be done using phyloge-
netic ANOVA, or other appropriate statistical methods (see Chap. 12 for an
introduction to phylogenetic-mixed models).

In von Hardenberg and Gonzalez-Voyer (2013), we used a simulation-based
approach to explore the consequences of ignoring phylogenetic non-independence
when undertaking confirmatory path analysis using the d-separation method. We
simulated evolution of five hypothetical traits along a simulated phylogeny under
the covariance matrix expected from the causal relationships among the traits
derived from a specific pre-defined causal model. In order to analyze the effects of
varying degrees of phylogenetic signal in the data, the simulations were run under
six different scenarios with different degrees of lambda (k), spanning from null to
strong phylogenetic signal in the simulated data. When k = 0 traits were simulated
evolving along a star phylogeny, where trait evolution for each species is com-
pletely independent, while at the other extreme of k = 1 traits were simulated to
evolve following a pure Brownian motion model, where the degree of similarity
between species traits is inversely proportional to the distance to the nearest
common ancestor. For the four remaining scenarios, prior to simulating trait
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evolution, the phylogenetic tree was transformed based on values of k ranging
from 0.2 to 0.8 (i.e., 0.2, 0.4, 0.6, and 0.8). Tests of conditional independencies
were done using the untransformed tree. One thousand datasets were simulated for
each of the six scenarios, each with an underlying phylogenetic tree of a fixed,
arbitrary size of 100 species. Each simulation of trait evolution was done using a
different simulated phylogeny; hence simulations also incorporated the effects of
varying phylogenetic topology. At each iteration, von Hardenberg and Gonzalez-
Voyer (2013) calculated Fisher’s C statistic and obtained a distribution of p values
to determine the level of type I error (i.e., the probability of rejecting the null
hypothesis, in this case the tested model, when it is true, testing the predicted set of
conditional independencies consistent with the ‘‘true’’ underlying causal model)
and the power (i.e., 1-the type II error, the probability of not rejecting the tested
model when it is actually false, testing the predicted set of conditional indepen-
dencies of a ‘‘wrong’’ causal model). These simulations were run both for d-sep
tests ignoring phylogenetic effects and for the phylogenetically explicit d-sep test.
The results of the first test, type I error, are shown in Fig. 8.8. It is clear that the
type I error of ‘‘classical’’ path analysis, ignoring phylogenetic non-independence,
increases rapidly with the degree of phylogenetic signal in the simulated data to
reach values [ 0.9 when traits are simulated to evolve via Brownian motion. On
the contrary, although our phylogenetic path analysis method is slightly over-
conservative, it nonetheless performs well under varying degrees of phylogenetic
signal in the data. Figure 8.8 clearly demonstrates the importance (to say the least)
of accounting for phylogenetic relatedness when undertaking path analysis using
the d-separation method. However, power was in general comparable between
‘‘classical’’ path analysis, ignoring phylogeny, and phylogenetic path analysis (see
Fig. 8.9). The high power of non-phylogenetic path analysis is not surprising. The
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Fig. 8.8 Type I error of traditional (i.e., non-phylogenetic OLS) and phylogenetic (PGLS) path
analysis under six simulated scenarios spanning low to high phylogenetic signal in the data
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sagacious reader will have already guessed that the high power of non-phyloge-
netic path analysis is a consequence of the high type I error. Indeed when ignoring
phylogenetic relationships, there is a higher probability of detecting significant
correlations among traits, even if these are simply due to phylogenetic relatedness
rather than true correlated evolution, with the result of a higher probability of
rejecting the proposed model.

8.6 Does Collinearity Affect Path Analysis?

Literature on the effect of collinearity on Path Analysis is controversial. While
some studies suggest that structural equation models (SEM) can effectively
eliminate problems with collinearity (Pugesek and Grace 1998; Pugesek and
Tomer 1995), others suggest it can be cause for concern (Petraitis et al. 1996;
Grewal et al. 2004). As far as we know, no study has specifically dealt with the
effect of multicollinearity on the d-separation method. Because the phylogenetic
path analysis method we presented (von Hardenberg and Gonzalez-Voyer 2013) is
based on the use of PGLS to test conditional independencies, violations of the
assumptions of PGLS will inevitably undermine such tests. Least squares estimates
of statistical model parameters are robust to moderate, even high, levels of col-
linearity (Freckleton 2011). However, estimates of parameter variance may be
very sensitive affecting hypothesis tests, which would undermine confidence on
tests of conditional independencies. Hence, strong collinearity can indeed be a
problem, as long it is a problem for PGLS although it will be limited to the specific
conditional independences we are testing. Our view is however, that the d-sepa-
ration method can actually be an effective way to disentangle collinearity, at least
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Fig. 8.9 Power of traditional (i.e., non-phylogenetic OLS) and phylogenetic (PGLS) path
analysis under six simulated scenarios spanning low- to high-phylogenetic signal in the data
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when it is not very strong. Indeed, the way you set up your path analysis model,
and test for the independence among the variables to see if your model fits the
data, you basically are testing for the presence of collinearity among your vari-
ables. Models with strong collinearity among the variables not directly causally
linked will be rejected by the data and therefore will not be accepted as a possible
explanation of the cause–effect relationships among the variables. On the other
hand, collinearity between predictors could also affect the power of tests of con-
ditional independencies because collinearity increases the standard error of partial
regression coefficients. As collinearity increases, the ability to detect a significant
effect (statistically non-zero partial regression slope) is reduced (Freckleton 2011).
An often-unappreciated problem is the effect of measurement error, which is
common for most (if not all) data employed in comparative analyses. Measure-
ment error can result in underestimation of model parameters, even in the absence
of collinearity, due to attenuation (Freckleton 2011). Bias increases when there is
measurement error in combination with collinearity. Under such circumstances,
attenuation leads to underestimation of the effect of the predictor with the weakest
effect, while the predictor with stronger effect is over-estimated (Freckleton 2011).
One possibility, which would need to be explored, is to include within-species
variation in the models, for example, using mixed models (see Chaps. 7 and 10).
By including several measurements per species for each trait, we could not only
obtain a better estimate of the species mean but also obtain an estimate of the
species-specific variation, which could potentially mitigate the effects of mea-
surement error, although this has yet to be explored in the context of phylogenetic
path analysis. We follow Freckleton (2009) and strongly suggest to always verify
that the assumptions of the statistical methods employed to test the conditional
independencies of the path model are met, this will ensure robust results of tests of
conditional independencies.

8.7 Conclusions

The aim of this chapter was first to demonstrate in a didactic and easy to follow
manner how to undertake a path analysis using the d-separation method (Shipley
2000b), while explicitly accounting for phylogenetic non-independence. As
pointed out previously, the method we propose (von Hardenberg and Gonzalez-
Voyer 2013) is not the only attempt (see for example Lesku et al. 2006; Santos
2009, 2012; Santos and Cannatella 2011). However, we think our method has
some advantages, including, but not limited to, flexibility in the evolutionary
model, ability to execute the analysis on the data as such rather than resorting to
independent contrasts, and ability to include variables resulting in non-normal
distribution of errors. Comparative methods are developing rapidly, for example,
Chap. 9 in this book deals with phylogenetic logistic regression methods, which
could in theory allow for phylogenetic path analysis including binary traits.
Furthermore, the flexibility of PGLS would also allow for phylogenetic path
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analysis to be undertaken accounting for variation in species traits (Martins and
Hansen 1997), for example, using mixed models. The second aim of this chapter
was to show how using phylogenetic path analysis novel questions in macroevo-
lution can be addressed. Using our example with the simulated Rhinogradentia
data, we showed how path analysis can help in disentangling evolutionary rela-
tionships between traits. For example, based on the results we can say, with some
confidence, that litter size has no direct causal effect on range size in this fictitious
mammalian order. We also show how phylogenetic path analysis can be employed
to compare models with alternative causal relationships between variables. We
must once again point out that the observed correlational pattern in the data can
imply more than one underlying causal model, hence we might not always be able
to distinguish between alternative causal models. Nonetheless, use of CICc, model
comparison, and model averaging procedures can allow us to propose causal
hypotheses among variables from the observed correlational patterns. Do we mean
to say that employing this method we can do away with the limitations of com-
parative analyses for inferring causality pointed out at the beginning of the
chapter? By no means! Such limitations are still there, and the statistical controls
we use to disentangle cause–effect relationships are of course not comparable to
the physical controls and randomizations we can apply in well-designed experi-
ments. However, as stated at the beginning of the chapter, such an experimental
approach is virtually impossible to carry out in the context of comparative anal-
yses. Phylogenetic path analysis (using the d-separation method we propose or
other approaches) may well be the only resort we have to infer causality in
comparative studies. We must however keep in mind that path analysis is a
hypothesis testing approach rather than a hypothesis-generating method. Carefully
pondered and biologically meaningful, and supported, hypotheses of the causal
relationships among studied traits must be presented before jumping into model
testing. The end result of such a process is the confirmation of the plausibility of
the proposed evolutionary causal model (although other alternative causal models
can possibly explain the same observed correlation pattern), and probably more
interestingly, the rejection of erroneous evolutionary causal models. We would
therefore caution readers against overconfidence on the correctness of a causal
model fitting the observed correlation structure; nonetheless we can be reasonably
sure that rejected models are wrong. With all the uncertainties macroevolutionary
studies must deal with, we think that the advantages provided by phylogenetic path
analysis are not trivial. Furthermore, the causal model, or the set of models, we
finally adopt as potential evolutionary explanations of the patterns we observe
among the traits, can be formally challenged by alternative models in future
studies involving new or better data. Such a process of presentation of a model
(our causal hypothesis) and its provisory acceptance as plausible explanation of a
causal phenomenon until it is confuted by an alternative model is at the very base
of modern scientific methodology. We hope to have been successful in transmit-
ting our enthusiasm for this method and to stimulate thought as to how it can allow
you to tackle evolutionary questions in the context of comparative analyses.
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